
Photocurrent Response of MoS₂ Field-Effect Transistor by Deep Ultraviolet Light in Atmospheric and N₂ Gas Environments

M. F. Khan,[†] M. W. Iqbal,[†] M. Z. Iqbal,[†] M. A. Shehzad,[‡] Y. Seo,[‡] and Jonghwa Eom^{*,†}

[†]Department of Physics and Graphene Research Institute and [‡]Faculty of Nanotechnology & Advanced Materials Engineering and Graphene Research Institute, Sejong University, Seoul 143-747, Korea

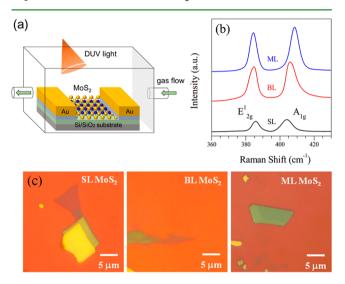
ABSTRACT: Molybdenum disulfide (MoS_2) , which is one of the representative transition metal dichalcogenides, can be made as an atomically thin layer while preserving its semiconducting characteristics. We fabricated single-, bi-, and multilayer MoS_2 field-effect transistor (FET) by the mechanical exfoliation method and studied the effect of deep ultraviolet (DUV) light illumination. The thickness of the MoS_2 layers was determined using an optical microscope and further confirmed by Raman spectroscopy and atomic force microscopy. The MoS_2 FETs with different number of layers were assessed for DUV-sensitive performances in various environments. The photocurrent response to DUV light becomes larger with increasing numbers of MoS_2 layers and is significantly enhanced in N_2 gas environment compared with that in atmospheric environment.

KEYWORDS: MoS₂, transition metal dichalcogenides, electrical measurement, deep ultraviolet light, photocurrent response

1. INTRODUCTION

Two-dimensional (2D) materials have facilitated new possibilities for electronic materials. For example, graphene is an appealing 2D material that has significant potential for application in electronic materials because of its superior electrical, photoelectrical, and biosensing properties.¹ However, graphene is a gapless material that has limitations in photodetecting and switching device applications. Transition metal dichalcogenide (TMDC) is an alternative material that has attractive properties, such as band gap and atomically thinlayered structure.^{2–6} Several 2D layered materials, such as molybdenum disulfide, gallium sulfide, gallium selenide, and tungsten diselenide,^{4,7–21} provide many advantages for photoelectrical devices.

MoS₂ is one of the most promising 2D TMDCs because of its layer-dependent band gap and sensitivity to surface adsorbents.²² Multilayer (ML) MoS₂ has an indirect band gap of ~1.2 eV, whereas single-layer (SL) MoS₂ has a direct band gap of ~1.8 eV. The dependence of energy band gap to the thickness of MoS₂ layer has been examined in theoretical studies.^{4,23-29} The layer-dependent light spectral response of MoS₂ sheets suggests that both ML and SL MoS₂ materials provide valuable properties for field-effect transistors (FETs).⁹ One of the advantages of ML MoS₂ films is a capability of high current flow. A sufficiently high current can flow in the ballistic limit of ML MoS₂ films because the density of states in ML MoS₂ is three times higher than that in SL MoS₂.³⁰ The layerdependent band gap in MoS_2 films is also useful for optoelectronics, $^{16,17,31-34}$ and a high surface-to-volume ratio is suitable for gas sensing. $^{35-37}$ Although several studies have been performed on atomically thin-layered MoS_2 devices for photocurrent response and possible gas sensing performance, $^{38-45}$ intensive investigations are still required to understand the photocurrent saturation—relaxation behavior and the effects of environments.


In this paper, we fabricated exfoliated SL, bilayer (BL), and ML MoS_2 FETs. The thickness of MoS_2 flakes was determined by optical microscopy and further confirmed by Raman spectroscopy. We investigated the electrical transport properties of MoS_2 FETs, which showed n-type semiconductor behavior. Photocurrent response was studied for different drainsource bias voltages by irradiation of a 220 nm dominant wavelength of deep ultraviolet (DUV) light. The time-dependent photocurrent response was studied for different layers of MoS_2 FETs. We also investigated the photocurrent response of MoS_2 FETs in air and nitrogen (N₂) gas environments.

Received:September 30, 2014Accepted:November 19, 2014Published:November 19, 2014

ACS Applied Materials & Interfaces

2. EXPERIMENTAL SECTION

SL, BL, and ML MoS₂ flakes were obtained by mechanical exfoliation. The MoS₂ flakes were placed on p-type doped Si substrates with 300 nm-thick SiO₂ cap layer.^{4,46,47} The SL, BL, and ML flakes were identified by optical microscopy, Raman spectroscopy, and atomic force microscopy (AFM). The number of layers of MoS₂ was determined using Renishaw Raman spectroscopy with laser wavelength of 514 nm. As first step of photolithography photoresist (SPR) and ethyl lactate (EL) were spin-coated on Si substrates. After developing the patterns by photolithography oxygen (O₂) plasma was applied for 5 min to remove residues of SPR and EL. The large patterns were made by evaporation of Cr/Au (10/30 nm). The fine electrode patterns were made by e-beam lithography and subsequent deposition of Cr/Au (10/60 nm) by thermal evaporation technique. Figure 1a shows a schematic view of the MoS₂ FET for photocurrent response measurement under DUV light.

Figure 1. (a) Schematic drawing of MoS_2 FET. (b) Raman spectra of pristine SL, BL, and ML of MoS_2 flakes. (c) Optical images of SL, BL, and ML of MoS_2 .

3. RESULTS AND DISCUSSION

Raman spectroscopy is a sensitive and nondestructive tool that provides accurate, plausible, and fine information on properties such as fine structure, thermal conductivity, strain effect, and chemical and impurity adsorption on material surfaces.⁴⁸⁻⁵⁵ Vibrational properties, particularly electron-phonon interactions of MoS₂, are important for Raman spectroscopy characterization because such properties have significant effects on the performance of MoS₂ FETs. The Raman spectra of our MoS₂ layers were analyzed at room temperature by keeping the laser wavelength at 514 nm and small laser power at 1.0 mW to avoid heating effect. Figure 1b shows the Raman spectra for different layers of pristine MoS₂ flakes, and the results show the number of layers. The SL has strong bands at \sim 386 and \sim 404 cm^{-1} , which are attributed to in-plane vibrational ($E_{2\sigma}^{1}$) and out-of-plane vibrational (A_{1g}) modes, respectively. When the number of layers was increased from SL to ML, the $E_{2\sigma}^1$ bands moved toward lower wavenumbers, whereas the A_{1g} bands moved toward higher wavenumbers. The E¹_{2g} and A_{1g} bands of BL are observed at \sim 385 and \sim 406 cm⁻¹, respectively. Similarly, the E_{2g}^{1} and A_{1g} peaks of ML are found at ~384 and ~408 cm⁻¹. The approximate gaps between E_{2g}^{1} and A_{1g} bands of SL, BL, and ML MoS₂ flakes are ~18, ~21, and ~24 cm⁻¹, respectively. These observations are consistent with those of previous reports.^{38,47,56} The MoS₂ layers were identified by optical images and shown in Figure 1c. The AFM images of SL, BL, and ML MoS₂ flakes are shown in Figure 2a-c, respectively. The measured thicknesses of SL, BL, and ML MoS₂ flakes are ~0.9, 1.72, and 8 nm, respectively (Figure 2df, respectively); these results are also consistent with those of previous reports.^{20,26}

The electrical properties of MoS₂ FETs were investigated in vacuum by applying back-gate voltage (V_g). We measured the transfer and output characteristics of SL, BL, and ML MoS₂ FETs. Figure 3a shows the transfer characteristics of SL, BL, and ML MoS₂ FETs. Transfer characteristics (drain-current I_D as a function of V_g) were measured at fixed drain-source voltage (V_{ds}) = 1 V. The I_D increased by a few orders of magnitude with increasing V_g . Figure 3b–d shows the output character-

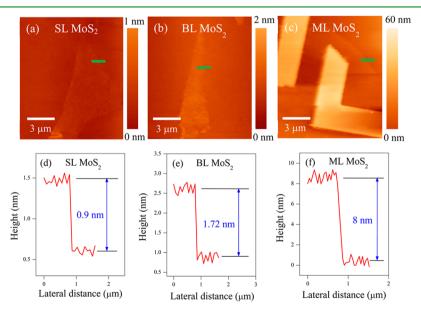


Figure 2. AFM images of (a) SL, (b) BL, and (c) ML MoS₂ flakes. Height profiles of (d) SL, (e) BL, and (f) ML MoS₂ flakes along the green lines in AFM images.

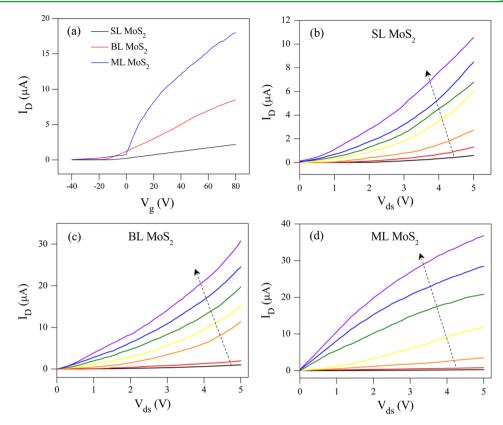
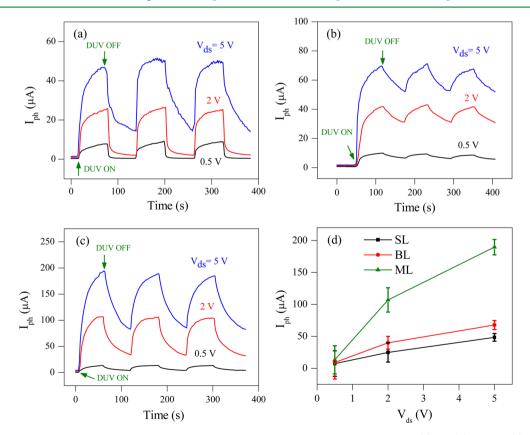



Figure 3. (a) Transfer characteristics of pristine SL, BL, and ML MoS₂ FETS. (b) Output characteristics of (b) SL, (c) BL, and (d) ML MoS₂ FETs at V_g ranging from -30 V to +30 V with change of 10 V step. All measurements were performed at room temperature in vacuum.

Figure 4. Photocurrent response after switching on and off the DUV light with V_{ds} of 0.5, 2.0, and 5.0 V for (a) SL, (b) BL, and (c) ML MoS₂ FETs, respectively. (d) Comparative photocurrent generation of SL, BL, and ML MoS₂ FETs as a function of V_{ds} . All measurements were performed at $V_g = 0$ V in atmospheric environment.

Research Article

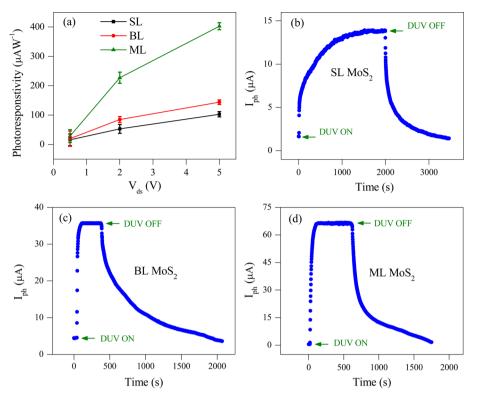


Figure 5. (a) Photoresponsivity of SL, BL, and ML MoS₂ FETs as a function of V_{ds} . Relaxation of photocurrent of (b) SL, (c) BL, and (d) ML MoS₂ FETs at $V_{ds} = 1$ V after switching DUV light on and off. All measurements were performed at $V_g = 0$ V in atmospheric environment.

istics of SL, BL, and ML MoS₂ FETs. The output characteristics $(I_{\rm D} \text{ vs } V_{\rm ds})$ were measured at fixed $V_{\rm g}$ ranging from -30 to +30V (bottom to top) with a step of 10 V. The V_g -dependent output characteristics of MoS₂ FETs indicate the characteristics of an n-type transistor. The field-effect mobilities of the different MoS₂ layers were obtained using $\mu = [L/(WC_{\sigma}V_{ds})]$ $[(dI_{ds}/dV_g)]$, where (dI_{ds}/dV_g) is slope of linear region of transfer curves, $C_{\rm g}$ is the gate capacitance (~115 aF/ μ m²) of the Si substrate with 300 nm thick SiO_2 cap layer, V_{ds} is the drain-source current for each device, L is the channel length and W is the channel width. The mobilities of SL, BL, and ML devices are 0.8, 6, and 17 cm² V⁻¹ s⁻¹, respectively. The ML FET showed higher I_D and larger mobility than BL and SL FETs. The charge carrier densities (n) of MoS₂ layers were calculated by using the relation, $n = C_g(V_g - V_{th})/e$, where V_{th} is the threshold voltage of SL, BL, and ML MoS₂ devices and e is the electronic charge. The threshold voltage of SL, BL, and ML MoS₂ FETs are at -21, -20, and -8 V, respectively. The charge carrier densities of SL, BL, and ML MoS₂ devices at V_{σ} = 30 V were 3.6 \times 10¹², 3.5 \times 10¹², and 2.7 \times 10¹² cm⁵⁻² respectively. The $I_{\rm on}/I_{\rm off}$ ratios of SL, BL, and ML MoS₂ FETs at room temperature were found to be $\sim 1 \times 10^5$, $\sim 1 \times 10^3$, and $\sim 1 \times 10^3$, respectively.

We have investigated the hysteresis in transfer characteristics of (a) SL, (b) BL, and (c) ML MoS₂ FETs in vacuum. When V_g was swept from -40 V to +80 V, the threshold voltages of SL, BL, and ML MoS₂ devices were found around -21, -20, and -8 V respectively. However, when V_g was swept from +80 V to -40 V, the threshold voltage were found around 0, -5, and 1 V respectively. So the hysteresis in SL, BL and ML MoS₂ FETs was ~21, ~15, and ~9 V, respectively. Because the charge impurities, such as oxygen molecules, can be captured at the surface of MoS₂, the surface-to-volume ratio of MoS₂ flake is an important factor to the occurrence of hysteresis in the transfer characteristics. The large hysteresis in SL MOS_2 FET is related with the large surface-to-volume ratio. The hysteresis of MOS_2 FETs in air and N_2 gas flow remains almost same as in vacuum, which indicates that charge impurities cannot be easily removed or added at the surface of MOS_2 by normal gas flow.

Figure 4a-c shows the photocurrent $[I_{ph} = I_D(time) I_{\rm D}({\rm initial \ state})]$ of SL, BL, and ML FETs as a function of exposure time of DUV light in atmospheric environment at different bias voltages (V_{ds} = 0.5, 2.0, 5.0 V). The intensity of DUV light was 11 mW/m². We kept $V_g = 0$ and switched the DUV light on and off for cycles of 60s each. When the DUV light was turned on, the photocurrent increased to higher values for 60s and decreased to lower values after turning off the DUV light for another 60s. The photocurrent also depends on the drain-source bias voltage applied to MoS₂ FETs. The photocurrent of SL \mbox{MoS}_2 FET showed $\mbox{I}_{\mbox{ph}}$ of 7.5, 25.0, and 48.5 μ A at V_{ds} of 0.5, 2.0, and 5.0 V, respectively. The photocurrent of BL MoS₂ FET showed I_{ph} of 9.3, 40.0, and 67.8 μ A at V_{ds} of 0.5, 2.0, and 5.0 V, respectively. Similarly, the photocurrent of ML $\rm MoS_2$ FET showed $\it I_{\rm ph}$ of 13.4, 107.0, and 189.6 μ A at V_{ds} of 0.5, 2.0, and 5.0 V, respectively. The photocurrent of ML MoS₂ FET is larger than those of SL and BL MoS₂ FETs (Figure 4d). This finding is attributed to the higher density of states and small energy band gap ($\sim 1.29 \text{ eV}$) in ML MoS₂ FET.

Photodetector performance can be estimated by the responsivity of the device to light illumination.⁵⁷ Photoresponsivity is defined as photocurrent per unit area per illumination power. In this study, we measured the photoresponsivity for DUV light at 11 mW/cm⁻² and $V_g = 0$ V. Figure 5a shows the photoresponsivity of SL, BL, and ML MoS₂ FETs as a function of V_{ds} . The ML MoS₂ FET showed

better photoresponsivity at ~401 μ AW⁻¹ than those of SL and BL MoS₂ FETs. When the V_{ds} was increased, the photocurrent and photoresponsivity also increased for all the MoS₂ FETs. The dependence of photocurrent and photoresponsivity on V_{ds} is related to charge carrier drift velocities in different V_{ds} .⁵⁸

We examined the detailed response behavior of photocurrent by 220 nm dominant DUV light. We illuminated the MoS₂ FETs with DUV light until photocurrent was saturated as shown in Figure 5 and then turned off the DUV light to observe the photocurrent decaying behavior. The saturation photocurrents of SL, BL, and ML MoS₂ FETs are ~14, ~36, and ~66 μ A at $V_{ds} = 1$ V and $V_g = 0$ V (Figure 5b–d, respectively). The photocurrent decaying behavior of SL, BL, and ML MoS₂ FETs is shown in Figure 6a–c, respectively. The photocurrent decaying measurements were performed at ambient condition. The decaying behavior of SL, BL, and ML

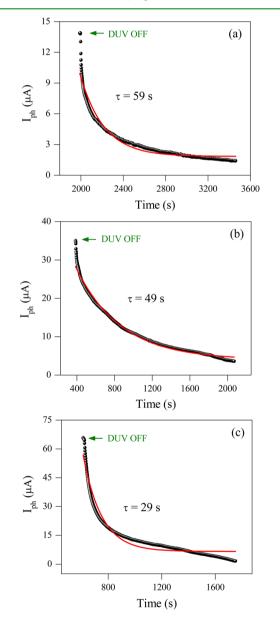


Figure 6. Photocurrent relaxation of (a) SL, (b) BL, and (c) ML MoS_2 FETs with $V_{ds} = 1$ V after switching DUV light off in atmospheric environment. Red curves are results fitted by eq 1

 MoS_2 FETs are fitted using the stretched-exponential function:^{38,59}

$$I_{\rm ph}(t) = I_{\rm ph}(0) \exp\left[-(t/\tau)^{\beta}\right] \tag{1}$$

where $I_{ph}(0)$ is the photocurrent when the DUV light is switched off, τ is the relaxation time, and β is the exponent that reflects the relaxation mechanism. The time constants of SL, BL, and ML MoS₂ FETs are 59, 49, and 29 s, respectively. The black solid circles show the experimental data, and the red line shows the result fitted by eq 1. The relaxation time of SL MoS₂ FET is larger than that of ML MoS₂ FET according to band gap size. Defects and impurities can induce extra energy levels inside the energy band gap, which affects the relaxation behavior. However, the observed relaxation time shows a consistent dependence on the number of layers in MoS₂ FETs, which suggests that the main mechanism of photocurrent relaxation is closely related to the energy gap of the MoS₂ layer.

The environmental effect of photocurrent response of MoS_2 FETs was investigated to assess the performance of these devices as DUV light detectors (see Figure 7). We measured the photocurrent while the SL, BL, and ML MoS_2 FETs were illuminated by DUV light in atmospheric and N₂ gas environments at room temperature. The measurement was performed at $V_{ds} = 1$ V and $V_g = 0$ V. We observed more enhancement of photocurrent generation in the N₂ gas environment compared with that in atmospheric environment. This observation is ascribed to the presence of oxygen in the air, which affects the charge-carrier density of MoS₂ layers.^{60,61} The enhancement of photocurrent response in N₂ gas environment is more dominant for SL MoS₂ FET. This finding is attributed to the higher surface-to-volume ratio than that of BL and ML MoS₂ FETs.

4. CONCLUSION

We fabricated SL, BL, and ML MoS₂ FETs. The MoS₂ flakes obtained via mechanical exfoliation were identified using an optical microscope and further confirmed by Raman spectroscopy and AFM. The electrical properties of SL, BL, and ML MoS₂ FETs were examined in vacuum. The ML MoS₂ FET had higher I_D and larger mobility than BL and SL MoS₂ FETs. The photocurrent responses of SL, BL, and ML MoS₂ FETs were studied using 220 nm dominant DUV light at $V_g = 0$ V. The photocurrent was proportional to the drain-source bias voltage, which was applied to the devices. The ML MoS₂ FET showed larger photocurrent than SL and BL MoS₂ FETs because of its small band gap and higher density of states. The relaxation of photocurrent response after turning off the DUV light was also studied for SL, BL, and ML MoS₂ FETs. The relaxation time of ML ${\rm MoS}_2$ FET was shorter than those of SL and BL ${\rm MoS}_2$ FETs, which was attributed to the size of energy band gap. The environmental effect of the photocurrent response of MoS₂ FETs was investigated to compare device performances in atmospheric and N2 gas environments. The photocurrent generation was enhanced for MoS2 FETs in the N2 gas environment compared with that in the atmospheric environment. The sensitivity of photocurrent response in N2 gas environment was prominent for SL MoS₂ FET compared with those for BL or ML MoS₂ FET. The surface-to-volume ratio could have a crucial effect in determining the dependence of environmental effect.

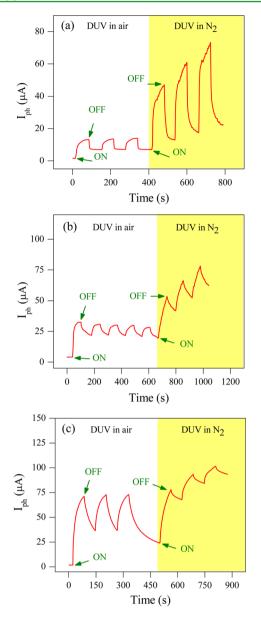


Figure 7. Photocurrent response in atmospheric and N₂ environments after switching DUV light on and off for (a) SL, (b) BL, and (c) ML MoS₂ FETs. All measurements were performed at V_{ds} = 1 V.

AUTHOR INFORMATION

Corresponding Author

*E-mail: eom@sejong.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by Nano-Material Technology Development Program (2012M3A7B4049888) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. This research was also supported by Priority Research Center Program (2010-0020207) and the Basic Science Research Program (2013R1A1A2061396) through NRF funded by the Ministry of Education.

REFERENCES

(1) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. *Nature* **2012**, *490*, 192–200.

(2) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. *Nat. Mater.* 2007, *6*, 183–191.

(3) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. *Rev. Mod. Phys.* **2009**, *81*, 109–162.

(4) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS₂ Transistors. *Nat. Nanotechnol.* 2011, *6*, 147–150.
(5) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS₂: A New Direct-Gap Semiconductor. *Phys. Rev. Lett.* 2010, 105, 136805.

(6) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. *Nat. Nanotechnol.* **2012**, *7*, 699–712.

(7) Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated Circuits Based on Bilayer MoS₂ Transistors. *Nano Lett.* **2012**, *12*, 4674–4680.

(8) Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid, V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Band-Like Transport in High Mobility Unencapsulated Single-Layer MoS₂ Transistors. *Appl. Phys. Lett.* **2013**, *102*, 173107.

(9) Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y.; Jin, Y. W.; Lee, S. Y.; Jena, D.; Choi, W.; Kim, K. High-Mobility and Low-Power Thin-Film Transistors Based on Multilayer MoS₂ crystals. *Nat. Commun.* **2012**, *3*, 1011.

(10) Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS₂ and WS₂ Analogues of Graphene. *Angew. Chem., Int. Ed.* **2010**, *49*, 4059–4062.

(11) Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-Layer MoS₂ Photo-transistors. *ACS Nano* **2012**, *6*, 74–80.

(12) Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and Electrical Characterization of Ultrathin Crystals of Layered Transition-Metal Dichalcogenides. *J. Appl. Phys.* **2007**, *101*, 14507.

(13) Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of Electronic States in Atomically Thin MoS_2 Field-Effect Transistors. ACS Nano 2011, 5, 7707–7712.

(14) Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in Single-Layer MoS₂ Field Effect Transistors. *ACS Nano* **2012**, *6*, 5635–5641.

(15) Castellanos-Gomez, A.; Agrait, N.; Rubio-Bollinger, G. Optical Identification of Atomically Thin Dichalcogenide Crystals. *Appl. Phys. Lett.* **2010**, *96*, 213116.

(16) Kashid, R. V.; Late, D. J.; Chou, S. S.; Huang, Y. K.; De, M.; Joag, D. S.; More, M. A.; Dravid, V. P. Enhanced Field-Emission Behavior of Layered MoS₂ Sheets. *Small* **2013**, *9*, 2730–2734.

(17) Late, D. J.; Liu, B.; Luo, J. J.; Yan, A. M.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. GaS and GaSe Ultrathin Layer Transistors. *Adv. Mater.* **2012**, *24*, 3549–3554.

(18) Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-Performance Single Layered WSe₂ p-FETs with Chemically Doped Contacts. *Nano Lett.* **2012**, *12*, 3788–3792.

(19) Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe₂ Field Effect Transistors. *Nano Lett.* **2013**, *13*, 1983–1990.

(20) Late, D. J.; Liu, B.; Matte, H.; Rao, C.; Dravid, V. P. Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO_2/Si Substrates. *Adv.Fun. Mater.* **2012**, *22*, 1894–1905.

(21) Rout, C. S.; Joshi, P. D.; Kashid, R. V.; Joag, D. S.; More, M. A.; Simbeck, A. J.; Washington, M.; Nayak, S. K.; Late, D. J. Superior Field Emission Properties of Layered WS₂-RGO Nanocomposites. *Sci. Rep.* **2013**, *3*, 3282.

ACS Applied Materials & Interfaces

(22) Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible Doping Strategies for MoS_2 Monolayers: An Ab Initio Study. *Phys. Rev.* B 2013, 88, 1–9.

(23) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS₂. *Nano Lett.* **2012**, *12*, 526–526.

(24) Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS₂. *Nano Lett.* **2010**, *10*, 1271–1275.

(25) Han, S.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D.; Hwang, J.; Kang, J.-S.; Baik, J.; Shin, H. Band-Gap Transition Induced by Interlayer Van Der Waals Interaction in MoS ₂. *Phys. Rev. B* **2011**, *84*, 045409.

(26) Li, H.; Yin, Z.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of Single-and Multilayer MoS_2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. *Small* **2012**, *8*, 63–67.

(27) Kuc, A.; Zibouche, N.; Heine, T. Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide TS2. *Phys. Rev. B* 2011, 83, 245213.

(28) Li, T. S.; Galli, G. L. Electronic Properties of MOS₂ Nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.

(29) Lebegue, S.; Eriksson, O. Electronic Structure of Two-Dimensional Crystals from ab initio Theory. *Phys. Rev. B* 2009, *79*, 115409.

(30) Natori, K. Ballistic Metal-Oxide-Semiconductor Field Effect Transistor. J. Appl. Phys. **1994**, *76*, 4879–4890.

(31) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Timensional Layered Transition Metal Dichalcogenide Nanosheets. *Nat. Chem.* **2013**, *5*, 263–275.

(32) Huang, X.; Zeng, Z.; Zhang, H. Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. *Chem. Soc. Rev.* 2013, 42, 1934–1946.

(33) Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. *ACS Nano* **2012**, *6*, 5988–5994.

(34) Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed Laser-Deposited MoS₂ Thin Films on W and Si: Field Emission and Photoresponse Studies. *ACS Appl. Mater. Interfaces* **2014**, *6*, 15881–15888.

(35) Fan, S. W.; Srivastava, A. K.; Dravid, V. P. Nanopatterned Polycrystalline ZnO for Room Temperature Gas Sensing. *Sens. Actuators, B* **2010**, *144*, 159–163.

(36) Korotcenkov, G. Metal Oxides for Solid-State Gas Sensors: What Determines our Choice? *Mater. Sci. Eng.*, B 2007, 139, 1–23.

(37) Doll, T.; Lechner, J.; Eisele, I.; Schierbaum, K. D.; Gopel, W. Ozone Detection in the ppb Range with Work function Sensors Operating at Room Temperature. *Sens. Actuators, B* **1996**, *34*, 506–510.

(38) Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-Gain Phototransistors Based on a CVD MoS₂ Monolayer. *Adv. Mater.* **2013**, *25*, 3456–3461.

(39) Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; Kim, S. High-Detectivity Multilayer MoS₂ Phototransistors with Spectral Response from Ultraviolet to Infrared. *Adv. Mater.* **2012**, *24*, 5832–5836.

(40) Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS₂ Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. *Nano Lett.* **2012**, *12*, 3695–3700.

(41) Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS₂. *Nat. Nanotechnol.* **2013**, *8*, 497–501.

(42) Lu, J.; Lu, J.; Liu, H.; Liu, B.; Chan, X. K.; Lin, J.; Chen, W.; Loh, K. P.; Sow, C. H. Improved Photoelectrical Properties of MoS_2 Films after Laser Micromachining. ACS Nano **2014**, *8*, 6334–6343.

(43) Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of Single- and

Multilayer MoS₂ Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. *Small* **2012**, *8*, 63–67.

(44) He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of Flexible MoS₂ Thin-Film Transistor Arrays for Practical Gas-Sensing Applications. *Small* **2012**, *8*, 2994–2999.

(45) Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P.; Jernigan, G.; Jonker, B. T. Chemical Vapor Sensing with Monolayer MoS₂. *Nano Lett.* **2013**, *13*, 668–673.

(46) Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. Two-Dimensional Atomic Crystals. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102*, 10451–10453.

(47) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS_2 . ACS Nano **2010**, 4, 2695–2700.

(48) Thripuranthaka, M.; Late, D. J. Temperature Dependent Phonon Shifts in Single-Layer WS2. ACS Appl. Mater. Interface **2014**, *6*, 1158–1163.

(49) Late, D. J.; Shirodkar, S. N.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Thermal Expansion, Anharmonicity and Temperature-Dependent Raman Spectra of Single- and Few-Layer MoSe₂ and WSe₂. *ChemPhysChem* **2014**, *15*, 1592–1598.

(50) Ellis, J. K.; Lucero, M. J.; Scuseria, G. E., The Indirect to Direct Band Gap Transition in Multilayered MoS_2 as Predicted by Screened Hybrid Density Functional Theory. *Appl. Phys. Lett.* **2011**, *99*, .

(51) Kuc, A.; Zibouche, N.; Heine, T. Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide TS₂. *Phys. Rev. B* **2011**, *83*, 245213.

(52) Castellanos-Gomez, A.; Roldan, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local Strain Engineering in Atomically Thin MoS₂. *Nano Lett.* **2013**, *13*, 5361–5366.

(53) Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. *ACS Nano* **2014**, *8*, 986–993.

(54) Du, Y. C.; Liu, H.; Neal, A. T.; Si, M. W.; Ye, P. D. Molecular Doping of Multilayer MoS_2 Field-Effect Transistors: Reduction in Sheet and Contact Resistances. *IEEE Electron. Device Lett.* **2013**, *34*, 1328–1330.

(55) Thripuranthaka, M.; Kashid, R. V.; Rout, C. S.; Late, D. J. Temperature Dependent Raman Spectroscopy of Chemically Derived Few Layer MoS₂ and WS₂ Nanosheets. *Appl. Phys. Lett.* **2014**, *104*, 081911.

(56) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **2012**, *22*, 1385–1390.

(57) Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K. Highly Responsive Ultrathin GaS Nanosheet. *Nano Lett.* **2013**, *13*, 1649–1654.

(58) Hu, P.; Zhang, J.; Yoon, M.; Qiao, X.-F.; Zhang, X.; Feng, W.; Tan, P.; Zheng, W.; Liu, J.; Wang, X. Highly Sensitive Phototransistors Based on Two-Dimensional GaTe Nanosheets with Direct Bandgap. *Nano Res.* **2014**, *7*, 694–703.

(59) Reemts, J.; Kittel, A. Persistent Photoconductivity in Highly Porous ZnO Films. J. Appl. Phys. 2007, 101, 013709.

(60) Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Sensing Behavior of Atomically Thin-Layered MoS₂ Transistors. *ACS Nano* **2013**, *7*, 4879–4891.

(61) Liu, B.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS₂ Transistors. *ACS Nano* **2014**, *8*, 5304–5314.